Find the Sample Standard Deviation 3 , 7 , 11 , 15
3 , 7 , 11 , 15
Step 1
Find the mean.
The mean of a set of numbers is the sum divided by the number of terms.
‾x=3+7+11+154
Simplify the numerator.
Add 3 and 7.
‾x=10+11+154
Add 10 and 11.
‾x=21+154
Add 21 and 15.
‾x=364
‾x=364
Divide36 by 4.
‾x=9
‾x=9
Step 2
Simplify each value in the list.
Convert 3 to a decimal value.
3
Convert 7 to a decimal value.
7
Convert 11 to a decimal value.
11
Convert 15 to a decimal value.
15
The simplified values are 3,7,11,15.
3,7,11,15
3,7,11,15
Step 3
Set up the formula for samplestandard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(3-9)2+(7-9)2+(11-9)2+(15-9)24-1
Step 5
Simplify the result.
Subtract 9 from 3.
s=√(-6)2+(7-9)2+(11-9)2+(15-9)24-1
Raise -6 to the power of 2.
s=√36+(7-9)2+(11-9)2+(15-9)24-1
Subtract 9 from 7.
s=√36+(-2)2+(11-9)2+(15-9)24-1
Raise -2 to the power of 2.
s=√36+4+(11-9)2+(15-9)24-1
Subtract 9 from 11.
s=√36+4+22+(15-9)24-1
Raise 2 to the power of 2.
s=√36+4+4+(15-9)24-1
Subtract 9 from 15.
s=√36+4+4+624-1
Raise 6 to the power of 2.
s=√36+4+4+364-1
Add 36 and 4.
s=√40+4+364-1
Add 40 and 4.
s=√44+364-1
Add 44 and 36.
s=√804-1
Subtract 1 from 4.
s=√803
Rewrite √803 as √80√3.
s=√80√3
Simplify the numerator.
Rewrite 80 as 42⋅5.
Factor16 out of 80.
s=√16(5)√3
Rewrite 16 as 42.
s=√42⋅5√3
s=√42⋅5√3
Pull terms out from under the radical.
s=4√5√3
s=4√5√3
Multiply4√5√3 by √3√3.
s=4√5√3⋅√3√3
Combine and simplify the denominator.
Multiply4√5√3 by √3√3.
s=4√5√3√3√3
Raise √3 to the power of 1.
s=4√5√3√3√3
Raise √3 to the power of 1.
s=4√5√3√3√3
Use the power ruleaman=am+n to combineexponents.
s=4√5√3√31+1
Add 1 and 1.
s=4√5√3√32
Rewrite √32 as 3.
Use n√ax=axn to rewrite √3 as 312.
s=4√5√3(312)2
Apply the power rule and multiplyexponents, (am)n=amn.
s=4√5√3312⋅2
Combine12 and 2.
s=4√5√3322
Cancel the common factor of 2.
Cancel the common factor.
s=4√5√3322
Rewrite the expression.
s=4√5√33
s=4√5√33
Evaluate the exponent.
s=4√5√33
s=4√5√33
s=4√5√33
Simplify the numerator.
Combine using the product rule for radicals.
s=4√3⋅53
Multiply3 by 5.
s=4√153
s=4√153
s=4√153
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.