Processing math: 100%
Arithmetic Sequence Calculator Geometric Sequence Calculator Harmonic Sequence Calculator Fibonacci Sequence Calculator Number Sequence Calculator Sequence Formula Calculator Sum of Linear Number Sequence Calculator Find the sequence and next term Recursive Sequence Calculator First Five Terms of a Sequence Bound Sequence calculator Missing Terms in Arthimetic Sequence calculator Limit of Sequence Calculator Sum of Sequence Calculator Arithemetic Sequence common difference calculator Geometric Sequence Ratio Calculator Arithmetic Sequence Equation Calculator Geometric Sequence Equation Calculator Monotonic Sequence Calculator Partial Sum Arithmetic Sequence Infinite Series Calculator



Find the Sample Standard Deviation 20 , 11 , 28 , 12 , 29 , 20

20 , 11 , 28 , 12 , 29 , 20

Step 1
Find the mean.

The mean of a set of numbers is the sum divided by the number of terms.
x=20+11+28+12+29+206
Simplify the numerator.

Add 20 and 11.
x=31+28+12+29+206
Add 31 and 28.
x=59+12+29+206
Add 59 and 12.
x=71+29+206
Add 71 and 29.
x=100+206
Add 100 and 20.
x=1206
x=1206
Divide 120 by 6.
x=20
x=20

Step 2
Simplify each value in the list.

Convert 20 to a decimal value.
20
Convert 11 to a decimal value.
11
Convert 28 to a decimal value.
28
Convert 12 to a decimal value.
12
Convert 29 to a decimal value.
29
Convert 20 to a decimal value.
20
The simplified values are 20,11,28,12,29,20.
20,11,28,12,29,20
20,11,28,12,29,20

Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1

Step 4
Set up the formula for standard deviation for this set of numbers.
s=(20-20)2+(11-20)2+(28-20)2+(12-20)2+(29-20)2+(20-20)26-1

Step 5
Simplify the result.

Subtract 20 from 20.
s=02+(11-20)2+(28-20)2+(12-20)2+(29-20)2+(20-20)26-1
Raising 0 to any positive power yields 0.
s=0+(11-20)2+(28-20)2+(12-20)2+(29-20)2+(20-20)26-1
Subtract 20 from 11.
s=0+(-9)2+(28-20)2+(12-20)2+(29-20)2+(20-20)26-1
Raise -9 to the power of 2.
s=0+81+(28-20)2+(12-20)2+(29-20)2+(20-20)26-1
Subtract 20 from 28.
s=0+81+82+(12-20)2+(29-20)2+(20-20)26-1
Raise 8 to the power of 2.
s=0+81+64+(12-20)2+(29-20)2+(20-20)26-1
Subtract 20 from 12.
s=0+81+64+(-8)2+(29-20)2+(20-20)26-1
Raise -8 to the power of 2.
s=0+81+64+64+(29-20)2+(20-20)26-1
Subtract 20 from 29.
s=0+81+64+64+92+(20-20)26-1
Raise 9 to the power of 2.
s=0+81+64+64+81+(20-20)26-1
Subtract 20 from 20.
s=0+81+64+64+81+026-1
Raising 0 to any positive power yields 0.
s=0+81+64+64+81+06-1
Add 0+81+64+64+81 and 0.
s=0+81+64+64+816-1
Add 0 and 81.
s=81+64+64+816-1
Add 81 and 64.
s=145+64+816-1
Add 145 and 64.
s=209+816-1
Add 209 and 81.
s=2906-1
Subtract 1 from 6.
s=2905
Divide 290 by 5.
s=58
s=58

Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
7.6