Loading [MathJax]/jax/output/HTML-CSS/jax.js
Arithmetic Sequence Calculator Geometric Sequence Calculator Harmonic Sequence Calculator Fibonacci Sequence Calculator Number Sequence Calculator Sequence Formula Calculator Sum of Linear Number Sequence Calculator Find the sequence and next term Recursive Sequence Calculator First Five Terms of a Sequence Bound Sequence calculator Missing Terms in Arthimetic Sequence calculator Limit of Sequence Calculator Sum of Sequence Calculator Arithemetic Sequence common difference calculator Geometric Sequence Ratio Calculator Arithmetic Sequence Equation Calculator Geometric Sequence Equation Calculator Monotonic Sequence Calculator Partial Sum Arithmetic Sequence Infinite Series Calculator



Find the Sample Standard Deviation 14 , 15 , 16 , 17 , 18

14 , 15 , 16 , 17 , 18

Step 1
Find the mean.

The mean of a set of numbers is the sum divided by the number of terms.
x=14+15+16+17+185
Simplify the numerator.

Add 14 and 15.
x=29+16+17+185
Add 29 and 16.
x=45+17+185
Add 45 and 17.
x=62+185
Add 62 and 18.
x=805
x=805
Divide 80 by 5.
x=16
x=16

Step 2
Simplify each value in the list.

Convert 14 to a decimal value.
14
Convert 15 to a decimal value.
15
Convert 16 to a decimal value.
16
Convert 17 to a decimal value.
17
Convert 18 to a decimal value.
18
The simplified values are 14,15,16,17,18.
14,15,16,17,18
14,15,16,17,18

Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1

Step 4
Set up the formula for standard deviation for this set of numbers.
s=(14-16)2+(15-16)2+(16-16)2+(17-16)2+(18-16)25-1

Step 5
Simplify the result.

Simplify the expression.

Subtract 16 from 14.
s=(-2)2+(15-16)2+(16-16)2+(17-16)2+(18-16)25-1
Raise -2 to the power of 2.
s=4+(15-16)2+(16-16)2+(17-16)2+(18-16)25-1
Subtract 16 from 15.
s=4+(-1)2+(16-16)2+(17-16)2+(18-16)25-1
Raise -1 to the power of 2.
s=4+1+(16-16)2+(17-16)2+(18-16)25-1
Subtract 16 from 16.
s=4+1+02+(17-16)2+(18-16)25-1
Raising 0 to any positive power yields 0.
s=4+1+0+(17-16)2+(18-16)25-1
Subtract 16 from 17.
s=4+1+0+12+(18-16)25-1
One to any power is one.
s=4+1+0+1+(18-16)25-1
Subtract 16 from 18.
s=4+1+0+1+225-1
Raise 2 to the power of 2.
s=4+1+0+1+45-1
Add 4 and 1.
s=5+0+1+45-1
Add 5 and 0.
s=5+1+45-1
Add 5 and 1.
s=6+45-1
Add 6 and 4.
s=105-1
Subtract 1 from 5.
s=104
s=104
Cancel the common factor of 10 and 4.

Factor 2 out of 10.
s=2(5)4
Cancel the common factors.

Factor 2 out of 4.
s=2522
Cancel the common factor.
s=2522
Rewrite the expression.
s=52
s=52
s=52
Rewrite 52 as 52.
s=52
Multiply 52 by 22.
s=5222
Combine and simplify the denominator.

Multiply 52 by 22.
s=5222
Raise 2 to the power of 1.
s=5222
Raise 2 to the power of 1.
s=5222
Use the power rule aman=am+n to combine exponents.
s=5221+1
Add 1 and 1.
s=5222
Rewrite 22 as 2.

Use nax=axn to rewrite 2 as 212.
s=52(212)2
Apply the power rule and multiply exponents, (am)n=amn.
s=522122
Combine 12 and 2.
s=52222
Cancel the common factor of 2.

Cancel the common factor.
s=52222
Rewrite the expression.
s=522
s=522
Evaluate the exponent.
s=522
s=522
s=522
Simplify the numerator.

Combine using the product rule for radicals.
s=522
Multiply 5 by 2.
s=102
s=102
s=102

Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
1.6