Find the Sample Standard Deviation 1 , 379+115 , 513
1 , 379+115 , 513
Step 1
Find the mean.
Add 379 and 115.
‾x=1,494,513
The mean of a set of numbers is the sum divided by the number of terms.
‾x=1+494+5133
Simplify the numerator.
Add 1 and 494.
‾x=495+5133
Add 495 and 513.
‾x=10083
‾x=10083
Divide1008 by 3.
‾x=336
‾x=336
Step 2
Simplify each value in the list.
Convert 1 to a decimal value.
1
Convert 494 to a decimal value.
494
Convert 513 to a decimal value.
513
The simplified values are 1,494,513.
1,494,513
1,494,513
Step 3
Set up the formula for samplestandard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(1-336)2+(494-336)2+(513-336)23-1
Step 5
Simplify the result.
Subtract 336 from 1.
s=√(-335)2+(494-336)2+(513-336)23-1
Raise -335 to the power of 2.
s=√112225+(494-336)2+(513-336)23-1
Subtract 336 from 494.
s=√112225+1582+(513-336)23-1
Raise 158 to the power of 2.
s=√112225+24964+(513-336)23-1
Subtract 336 from 513.
s=√112225+24964+17723-1
Raise 177 to the power of 2.
s=√112225+24964+313293-1
Add 112225 and 24964.
s=√137189+313293-1
Add 137189 and 31329.
s=√1685183-1
Subtract 1 from 3.
s=√1685182
Divide168518 by 2.
s=√84259
s=√84259
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.