Processing math: 100%
Arithmetic Sequence Calculator Geometric Sequence Calculator Harmonic Sequence Calculator Fibonacci Sequence Calculator Number Sequence Calculator Sequence Formula Calculator Sum of Linear Number Sequence Calculator Find the sequence and next term Recursive Sequence Calculator First Five Terms of a Sequence Bound Sequence calculator Missing Terms in Arthimetic Sequence calculator Limit of Sequence Calculator Sum of Sequence Calculator Arithemetic Sequence common difference calculator Geometric Sequence Ratio Calculator Arithmetic Sequence Equation Calculator Geometric Sequence Equation Calculator Monotonic Sequence Calculator Partial Sum Arithmetic Sequence Infinite Series Calculator



Find the Sample Standard Deviation 1 , 112 , 1 , 245 , 1 , 361 , 1372 , 1 , 472

1 , 112 , 1 , 245 , 1 , 361 , 1372 , 1 , 472

Step 1
Find the mean.

The mean of a set of numbers is the sum divided by the number of terms.
x=1+112+1+245+1+361+1372+1+4729
Simplify the numerator.

Add 1 and 112.
x=113+1+245+1+361+1372+1+4729
Add 113 and 1.
x=114+245+1+361+1372+1+4729
Add 114 and 245.
x=359+1+361+1372+1+4729
Add 359 and 1.
x=360+361+1372+1+4729
Add 360 and 361.
x=721+1372+1+4729
Add 721 and 1372.
x=2093+1+4729
Add 2093 and 1.
x=2094+4729
Add 2094 and 472.
x=25669
x=25669
Divide.
x=285.1
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
x=285.1
x=285.1

Step 2
Simplify each value in the list.

Convert 1 to a decimal value.
1
Convert 112 to a decimal value.
112
Convert 1 to a decimal value.
1
Convert 245 to a decimal value.
245
Convert 1 to a decimal value.
1
Convert 361 to a decimal value.
361
Convert 1372 to a decimal value.
1372
Convert 1 to a decimal value.
1
Convert 472 to a decimal value.
472
The simplified values are 1,112,1,245,1,361,1372,1,472.
1,112,1,245,1,361,1372,1,472
1,112,1,245,1,361,1372,1,472

Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1

Step 4
Set up the formula for standard deviation for this set of numbers.
s=(1-285.1)2+(112-285.1)2+(1-285.1)2+(245-285.1)2+(1-285.1)2+(361-285.1)2+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1

Step 5
Simplify the result.

Subtract 285.1 from 1.
s=(-284.1)2+(112-285.1)2+(1-285.1)2+(245-285.1)2+(1-285.1)2+(361-285.1)2+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1
Raise -284.1 to the power of 2.
s=80712.81+(112-285.1)2+(1-285.1)2+(245-285.1)2+(1-285.1)2+(361-285.1)2+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1
Subtract 285.1 from 112.
s=80712.81+(-173.1)2+(1-285.1)2+(245-285.1)2+(1-285.1)2+(361-285.1)2+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1
Raise -173.1 to the power of 2.
s=80712.81+29963.61+(1-285.1)2+(245-285.1)2+(1-285.1)2+(361-285.1)2+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1
Subtract 285.1 from 1.
s=80712.81+29963.61+(-284.1)2+(245-285.1)2+(1-285.1)2+(361-285.1)2+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1
Raise -284.1 to the power of 2.
s=80712.81+29963.61+80712.81+(245-285.1)2+(1-285.1)2+(361-285.1)2+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1
Subtract 285.1 from 245.
s=80712.81+29963.61+80712.81+(-40.1)2+(1-285.1)2+(361-285.1)2+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1
Raise -40.1 to the power of 2.
s=80712.81+29963.61+80712.81+1608.01+(1-285.1)2+(361-285.1)2+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1
Subtract 285.1 from 1.
s=80712.81+29963.61+80712.81+1608.01+(-284.1)2+(361-285.1)2+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1
Raise -284.1 to the power of 2.
s=80712.81+29963.61+80712.81+1608.01+80712.81+(361-285.1)2+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1
Subtract 285.1 from 361.
s=80712.81+29963.61+80712.81+1608.01+80712.81+75.92+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1
Raise 75.9 to the power of 2.
s=80712.81+29963.61+80712.81+1608.01+80712.81+5760.81+(1372-285.1)2+(1-285.1)2+(472-285.1)29-1
Subtract 285.1 from 1372.
s=80712.81+29963.61+80712.81+1608.01+80712.81+5760.81+1086.92+(1-285.1)2+(472-285.1)29-1
Raise 1086.9 to the power of 2.
s=80712.81+29963.61+80712.81+1608.01+80712.81+5760.81+1181351.61+(1-285.1)2+(472-285.1)29-1
Subtract 285.1 from 1.
s=80712.81+29963.61+80712.81+1608.01+80712.81+5760.81+1181351.61+(-284.1)2+(472-285.1)29-1
Raise -284.1 to the power of 2.
s=80712.81+29963.61+80712.81+1608.01+80712.81+5760.81+1181351.61+80712.81+(472-285.1)29-1
Subtract 285.1 from 472.
s=80712.81+29963.61+80712.81+1608.01+80712.81+5760.81+1181351.61+80712.81+186.929-1
Raise 186.9 to the power of 2.
s=80712.81+29963.61+80712.81+1608.01+80712.81+5760.81+1181351.61+80712.81+34931.619-1
Add 80712.81 and 29963.61.
s=110676.42+80712.81+1608.01+80712.81+5760.81+1181351.61+80712.81+34931.619-1
Add 110676.42 and 80712.81.
s=191389.23+1608.01+80712.81+5760.81+1181351.61+80712.81+34931.619-1
Add 191389.23 and 1608.01.
s=192997.24+80712.81+5760.81+1181351.61+80712.81+34931.619-1
Add 192997.24 and 80712.81.
s=273710.05+5760.81+1181351.61+80712.81+34931.619-1
Add 273710.05 and 5760.81.
s=279470.86+1181351.61+80712.81+34931.619-1
Add 279470.86 and 1181351.61.
s=1460822.47+80712.81+34931.619-1
Add 1460822.47 and 80712.81.
s=1541535.28+34931.619-1
Add 1541535.28 and 34931.61.
s=1576466.899-1
Subtract 1 from 9.
s=1576466.898
Divide 1576466.89 by 8.
s=197058.36125
s=197058.36125

Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
443.9