The mean of a set of numbers is the sum divided by the number of terms.
‾x=1+112+1+245+1+361+1372+1+4729
Simplify the numerator.
Add 1 and 112.
‾x=113+1+245+1+361+1372+1+4729
Add 113 and 1.
‾x=114+245+1+361+1372+1+4729
Add 114 and 245.
‾x=359+1+361+1372+1+4729
Add 359 and 1.
‾x=360+361+1372+1+4729
Add 360 and 361.
‾x=721+1372+1+4729
Add 721 and 1372.
‾x=2093+1+4729
Add 2093 and 1.
‾x=2094+4729
Add 2094 and 472.
‾x=25669
‾x=25669
Divide.
‾x=285.‾1
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
‾x=285.1
‾x=285.1
Step 2
Simplify each value in the list.
Convert 1 to a decimal value.
1
Convert 112 to a decimal value.
112
Convert 1 to a decimal value.
1
Convert 245 to a decimal value.
245
Convert 1 to a decimal value.
1
Convert 361 to a decimal value.
361
Convert 1372 to a decimal value.
1372
Convert 1 to a decimal value.
1
Convert 472 to a decimal value.
472
The simplified values are 1,112,1,245,1,361,1372,1,472.
1,112,1,245,1,361,1372,1,472
1,112,1,245,1,361,1372,1,472
Step 3
Set up the formula for samplestandard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.