Processing math: 100%
Arithmetic Sequence Calculator Geometric Sequence Calculator Harmonic Sequence Calculator Fibonacci Sequence Calculator Number Sequence Calculator Sequence Formula Calculator Sum of Linear Number Sequence Calculator Find the sequence and next term Recursive Sequence Calculator First Five Terms of a Sequence Bound Sequence calculator Missing Terms in Arthimetic Sequence calculator Limit of Sequence Calculator Sum of Sequence Calculator Arithemetic Sequence common difference calculator Geometric Sequence Ratio Calculator Arithmetic Sequence Equation Calculator Geometric Sequence Equation Calculator Monotonic Sequence Calculator Partial Sum Arithmetic Sequence Infinite Series Calculator



Find the Sample Standard Deviation -1 , 0 , 1 , -2 , -1 , 4 , 15

-1 , 0 , 1 , -2 , -1 , 4 , 15

Step 1
Find the mean.

The mean of a set of numbers is the sum divided by the number of terms.
x=-1+0+1-2-1+4+157
Simplify the numerator.

Add -1 and 0.
x=-1+1-2-1+4+157
Add -1 and 1.
x=0-2-1+4+157
Subtract 2 from 0.
x=-2-1+4+157
Subtract 1 from -2.
x=-3+4+157
Add -3 and 4.
x=1+157
Add 1 and 15.
x=167
x=167
Divide.
x=2.285714
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
x=2.3
x=2.3

Step 2
Simplify each value in the list.

Convert -1 to a decimal value.
-1
Convert 0 to a decimal value.
0
Convert 1 to a decimal value.
1
Convert -2 to a decimal value.
-2
Convert -1 to a decimal value.
-1
Convert 4 to a decimal value.
4
Convert 15 to a decimal value.
15
The simplified values are -1,0,1,-2,-1,4,15.
-1,0,1,-2,-1,4,15
-1,0,1,-2,-1,4,15

Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1

Step 4
Set up the formula for standard deviation for this set of numbers.
s=(-1-2.3)2+(0-2.3)2+(1-2.3)2+(-2-2.3)2+(-1-2.3)2+(4-2.3)2+(15-2.3)27-1

Step 5
Simplify the result.

Subtract 2.3 from -1.
s=(-3.3)2+(0-2.3)2+(1-2.3)2+(-2-2.3)2+(-1-2.3)2+(4-2.3)2+(15-2.3)27-1
Raise -3.3 to the power of 2.
s=10.89+(0-2.3)2+(1-2.3)2+(-2-2.3)2+(-1-2.3)2+(4-2.3)2+(15-2.3)27-1
Subtract 2.3 from 0.
s=10.89+(-2.3)2+(1-2.3)2+(-2-2.3)2+(-1-2.3)2+(4-2.3)2+(15-2.3)27-1
Raise -2.3 to the power of 2.
s=10.89+5.29+(1-2.3)2+(-2-2.3)2+(-1-2.3)2+(4-2.3)2+(15-2.3)27-1
Subtract 2.3 from 1.
s=10.89+5.29+(-1.3)2+(-2-2.3)2+(-1-2.3)2+(4-2.3)2+(15-2.3)27-1
Raise -1.3 to the power of 2.
s=10.89+5.29+1.69+(-2-2.3)2+(-1-2.3)2+(4-2.3)2+(15-2.3)27-1
Subtract 2.3 from -2.
s=10.89+5.29+1.69+(-4.3)2+(-1-2.3)2+(4-2.3)2+(15-2.3)27-1
Raise -4.3 to the power of 2.
s=10.89+5.29+1.69+18.49+(-1-2.3)2+(4-2.3)2+(15-2.3)27-1
Subtract 2.3 from -1.
s=10.89+5.29+1.69+18.49+(-3.3)2+(4-2.3)2+(15-2.3)27-1
Raise -3.3 to the power of 2.
s=10.89+5.29+1.69+18.49+10.89+(4-2.3)2+(15-2.3)27-1
Subtract 2.3 from 4.
s=10.89+5.29+1.69+18.49+10.89+1.72+(15-2.3)27-1
Raise 1.7 to the power of 2.
s=10.89+5.29+1.69+18.49+10.89+2.89+(15-2.3)27-1
Subtract 2.3 from 15.
s=10.89+5.29+1.69+18.49+10.89+2.89+12.727-1
Raise 12.7 to the power of 2.
s=10.89+5.29+1.69+18.49+10.89+2.89+161.297-1
Add 10.89 and 5.29.
s=16.18+1.69+18.49+10.89+2.89+161.297-1
Add 16.18 and 1.69.
s=17.87+18.49+10.89+2.89+161.297-1
Add 17.87 and 18.49.
s=36.36+10.89+2.89+161.297-1
Add 36.36 and 10.89.
s=47.25+2.89+161.297-1
Add 47.25 and 2.89.
s=50.14+161.297-1
Add 50.14 and 161.29.
s=211.437-1
Subtract 1 from 7.
s=211.436
Divide 211.43 by 6.
s=35.2383
s=35.2383

Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
5.9