Sequences Calculator
Arithmetic Sequence
Geometric Sequence
Harmonic Sequence
Arithmetic Sequence Calculator
Geometric Sequence Calculator
Harmonic Sequence Calculator
Fibonacci Sequence Calculator
Number Sequence Calculator
Sequence Formula Calculator
Sum of Linear Number Sequence Calculator
Find the sequence and next term
Recursive Sequence Calculator
First Five Terms of a Sequence
Bound Sequence calculator
Missing Terms in Arthimetic Sequence calculator
Limit of Sequence Calculator
Sum of Sequence Calculator
Arithemetic Sequence common difference calculator
Geometric Sequence Ratio Calculator
Arithmetic Sequence Equation Calculator
Geometric Sequence Equation Calculator
Monotonic Sequence Calculator
Partial Sum Arithmetic Sequence
Infinite Series Calculator
Find the Five Number Summary 120 , 145 , 187 , 153 , 119 , 138 , 127 , 142 , 179 , 164 , 152 , 202 , 114 , 174 , 130 , 149 , 167 , 174
, , , , , , , , , , , , , , , , ,
Step 1
The five-number summary is a descriptive statistic that provides information about a
set
of observations. It consists of the following
statistics
:
1.
Minimum
(Min) - the smallest observation
2.
Maximum
(Max) - the largest observation
3.
Median
- the middle
term
4. First
Quartile
- the middle
term
of values below the
median
5. Third
Quartile
- the middle
term
of values above the
median
Step 2
Arrange the
terms
in ascending order.
Step 3
The
minimum
value is the smallest value in the arranged
data
set
.
Step 4
The
maximum
value is the largest value in the arranged
data
set
.
Step 5
Find the
median
.
The
median
is the middle
term
in the arranged
data
set
. In the case of an
even number
of
terms
, the
median
is the
average
of the two middle
terms
.
Remove parentheses.
Add and .
Convert the
median
to decimal.
Step 6
Find the first
quartile
by finding the
median
of the
set
of values to the left of the
median
.
The lower
half
of
data
is the
set
below the
median
.
The
median
is the middle
term
in the arranged
data
set
.
Step 7
Find the third
quartile
by finding the
median
of the
set
of values to the right of the
median
.
The upper
half
of
data
is the
set
above the
median
.
The
median
is the middle
term
in the arranged
data
set
.
Step 8
The five most important
sample
values are
sample
minimum
,
sample
maximum
,
median
, lower
quartile
, and upper
quartile
.
Related Questions
Find the Mode 0.4 , 0.5 , 0.7 , 0.8 , 0.8 , 1.1 , 0.4 , 0.9 , 1.3
Find the Mode 0.5 , 0.6 , 0.8 , 0.9 , 0.9 , 1.2 , 0.5 , 1 , 1.4
Find the Mode 0.5 , 0.6 , 0.80 , 0.9 , 1.2 , 0.5 , 1 , 1.4
Find the Range 4 , 6 , 4 , 5 , 2 , 3 , 6 , 7 , 4
Find the Range 4 , 6 , 9 , 11 , 14
Find the Range 4 , 7 , 2 , 7 , 9 , 10 , 15
Find the Range 4 , 7 , 9 , 11 , 14
Find the Range 4 , 8 , 11 , 15 , 27
Find the Range 11 , 13 , 24 , 9 , 24 , 14 , 10
Find the Range 41 , 30 , 28 , 20 , 13 , 12 , 16 , 24 , 28 , 32
Find the Range 41 , 90 , 27 , 77 , 74 , 39 , 52 , 33 , 80
Find the Range 49 , 52 , 57 , 63 , 65 , 65 , 67 , 6
Find the Range 44 , 56 , 38 , 55 , 62 , 56 , 48 , 62 , 56
Find the Range 5 , 2 , 6 , 5 , 2 , 2 , 7 , 2 , 5
Find the Range 42 , 40 , 40 , 47 , 41
Find the Range 49 , 28
Find the Range 43 , 310.60975
Find the Range 44 , 64 , 54 , 58 , 90
Find the Range 5 , 5 , 9 , 11 , 13
Find the Range 5 , 6712
Find the Range 5 , 7 , 10 , 12 , 15 , 17 , 20
Find the Range 5 , 8 , 9 , 12 , 15
Find the Range 52 , 52 , 76 , 56 , 67 , 89 , 70
Find the Range 54 , 0
Find the Range 55.8 , 94.01 , 33 , 83.7 , 87.76 , 56 , 96.2